Search results for "Holm equations"

showing 2 items of 2 documents

Smooth and non-smooth traveling wave solutions of some generalized Camassa–Holm equations

2014

In this paper we employ two recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a recently-derived integrable family of generalized Camassa-Holm (GCH) equations. A recent, novel application of phase-plane analysis is employed to analyze the singular traveling wave equations of three of the GCH NLPDEs, i.e. the possible non-smooth peakon, cuspon and compacton solutions. Two of the GCH equations do not support singular traveling waves. The third equation supports four-segmented, non-smooth $M$-wave solutions, while the fourth supports both solitary (peakon) and periodic (cuspon) cusp waves in different parameter regimes. Moreover, sm…

Equilibrium pointCusp (singularity)Numerical AnalysisSeries (mathematics)Applied MathematicsMathematical analysisFOS: Physical sciencesGeneralized Camassa-Holm Equations Traveling waves Homoclinic and Heteroclinic OrbitsMathematical Physics (math-ph)PeakonModeling and SimulationSaddle pointHomoclinic orbitMathematical PhysicsSaddleConvergent seriesMathematicsCommunications in Nonlinear Science and Numerical Simulation
researchProduct

Generalized Camassa-Holm Equations: Symmetry, Conservation Laws and Regular Pulse and Front Solutions

2021

In this paper, we consider a member of an integrable family of generalized Camassa–Holm (GCH) equations. We make an analysis of the point Lie symmetries of these equations by using the Lie method of infinitesimals. We derive nonclassical symmetries and we find new symmetries via the nonclassical method, which cannot be obtained by Lie symmetry method. We employ the multiplier method to construct conservation laws for this family of GCH equations. Using the conservation laws of the underlying equation, double reduction is also constructed. Finally, we investigate traveling waves of the GCH equations. We derive convergent series solutions both for the homoclinic and heteroclinic orbits of the…

Holm equationsIntegrable systemGeneral MathematicsInfinitesimalNonclassical symmetries01 natural sciencesdouble reduction010305 fluids & plasmas0103 physical sciencesmultiplier methodComputer Science (miscellaneous)QA1-939Generalized Camassa–Holm equationsHomoclinic orbit010306 general physicsEngineering (miscellaneous)Settore MAT/07 - Fisica MatematicaConvergent seriesmulti-infinite series solutionsMathematicsMathematical physicsConservation lawsnonclassical symmetriesConservation lawHomoclinic and heteroclinic orbitsMulti-infinite series solutionsDouble reductionSymmetry (physics)Pulse (physics)generalized Camassa&#8211Mathematics::LogicMultiplier methodHomogeneous spaceconservation lawshomoclinic and heteroclinic orbitsMathematics
researchProduct